Search results for "Cross-Flow turbine"

showing 10 items of 14 documents

Coupled hydraulic and electronic regulation of cross-flow turbines in hydraulic plants

2017

The potential benefit of coupling hydraulic and electronic regulation to maximize the energy production of a cross-flow turbine in hydraulic plants is analyzed and computed with reference to a specific case. Design criteria of the cross-flow turbine inside hydraulic plants are first summarized, along with the use of hydraulic regulation in the case of constant water head and variable discharge. Optimal turbine impeller rotational speed is derived, and traditional as well as innovative systems for electrical regulation are presented. A case study is analyzed to evaluate the potential energy production according to the expected monthly mean flow distribution and two possible choices: CFT1 wit…

Engineering020209 energy0208 environmental biotechnologyFlow (psychology)Mechanical engineering02 engineering and technologyTurbineSettore ICAR/01 - IdraulicaHydraulic headImpeller0202 electrical engineering electronic engineering information engineeringMean flowWater Science and TechnologyCivil and Structural Engineeringbusiness.industryMechanical EngineeringDistributed generation unitsRotational speedCross-flow turbinesPotential energy020801 environmental engineeringElectrical drivesBanki-MichellComputational fluid dynamics (CFD) analysisbusinessEnergy (signal processing)Marine engineering
researchProduct

Experimental and Numerical Analysis of a Cross-Flow Turbine

2016

An important component of the management cost of aqueducts is the energy costs. Part of these costs can be recovered by transforming some of the many existing energy dissipations into electric energy by means of economical turbines. This paper describes an experimental study that has been carried out in order to (1) test the performance of an economical cross-flow turbine that maintains high efficiency within a large range of water discharges, and (2) validate a new approximate formula relating main inlet velocity to inlet pressure. It is demonstrated that the proposed formula, on the basis of some simplifying assumptions, exactly links inlet velocity to inlet pressure with any possible geo…

EngineeringInlet velocitybusiness.industry020209 energyMechanical EngineeringNumerical analysisCross-flow turbines Water turbines Turbine experiments Turbine hydraulic design Computational fluid dynamicsMechanical engineering02 engineering and technologyLarge rangeComputational fluid dynamicsTurbineSettore ICAR/01 - IdraulicaElectric energy0202 electrical engineering electronic engineering information engineeringCross-flow turbinebusinessEnergy (signal processing)Water Science and TechnologyCivil and Structural EngineeringMarine engineeringJournal of Hydraulic Engineering
researchProduct

A New Cross-Flow Type Turbine for Ultra-Low Head in Streams and Channels

2023

In the last few decades, hydropower production has been moving toward a new paradigm of low and diffused power density production of energy with small and mini-hydro plants, which usually do not require significant water storage. In the case of nominal power lower than 20 kW and ultra-low head H (H < 5 m), Archimedes screw or Kaplan type turbines are usually chosen due to their efficiency, which is higher than 0.85. A new cross-flow type turbine called Ultra-low Power Recovery System (UL-PRS) is proposed and its geometry and design criteria are validated in a wide range of operating conditions through 2D numerical analysis computed using the ANSYS Fluent solver. The new proposed solution…

hydropowercross-flow turbineSettore ING-IND/08 - Macchine A FluidoGeography Planning and Developmentultra-low head turbinesustainable energyAquatic ScienceBiochemistryWater Science and TechnologySettore ICAR/01 - Idraulica
researchProduct

Cross-Flow Turbine Design For Energy Production And Discharge Regulation

2015

Cross-flow turbines are very efficient and cheap turbines that allow a very good cost/benefit ratio for energy production located at the end of conduits carrying water from a water source to a tank. In this paper a new design procedure for a cross-flow turbine working with a variable flow rate is proposed. The regulation of the head immediately upstream the turbine is faced by adopting a shaped semicircular segment moving around the impeller. The maximum efficiency of the turbine is attained by setting the velocity of the particles entering the impeller at about twice the velocity of the rotating system at the impeller inlet. If energy losses along the pipe are negligible, the semicircular …

Engineeringgeographygeography.geographical_feature_categorybusiness.industryMechanical EngineeringInletTurbineSlip factorSettore ICAR/01 - IdraulicaDraft tubeHydraulic headImpellerEnergy production CFD water supply network.Head (vessel)Cross-flow turbinebusinessWater Science and TechnologyCivil and Structural EngineeringMarine engineeringTurbine
researchProduct

Numerical and experimental investigation of a cross-flow water turbine

2016

ABSTRACTA numerical and experimental study was carried out for validation of a previously proposed design criterion for a cross-flow turbine and a new semi-empirical formula linking inlet velocity to inlet pressure. An experimental test stand was designed to conduct a series of experiments and to measure the efficiency of the turbine designed based on the proposed criterion. The experimental efficiency was compared to that from numerical simulations performed using a RANS model with a shear stress transport (SST) turbulence closure. The proposed semi-empirical velocity formula was also validated against the numerical solutions for cross-flow turbines with different geometries and boundary c…

Water turbine020209 energyFlow (psychology)experimental facility02 engineering and technology010501 environmental sciences01 natural sciencesTurbinehydraulic modelSettore ICAR/01 - IdraulicaPhysics::Fluid Dynamics0202 electrical engineering electronic engineering information engineeringShear stressBoundary value problem0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural EngineeringTurbulenceMechanicshydraulics of renewable energy systemhydraulic machinery designCross-flow turbine; experimental facility; hydraulic machinery design; hydraulic model; hydraulics of renewable energy systems; RANS modelCross-flow turbineRANS modelEnvironmental scienceCross-flow turbineReynolds-averaged Navier–Stokes equations
researchProduct

DEVIATORE DI FLUSSO PER TURBINE IDRAULICHE IN LINEA

2021

Un deviatore di flusso per una turbina idraulica a flusso incrociato presenta una sezione di uscita atta ad essere collegata alla sezione a valle della condotta idraulica per l’immissione di un flusso in uscita del fluido liquido in pressione con un vettore di velocità di uscita avente modulo di uscita (Vo) e direzione di uscita (do) predeterminati, un condotto di scarico per il ripristino del vettore velocità di detto flusso in uscita al modulo in ingresso ed a una direzione di uscita sostanzialmente parallela o coincidente con detta direzione di ingresso (di), in cui detto deviatore comprende, un primo settore immediatamente a valle di detta girante ed atto a variare la direzione del flus…

hydropowercross-flow turbinePower Recovery System (PRS)energy recoveryPressurized diffuser
researchProduct

Energy recovery from rectangular weirs in wastewater treat-ment plants

2022

Hydraulic turbines for energy recovery in wastewater treatment plants, with relatively large discharges and small head jumps, are usually screw or Kaplan types. In the specific case of a small head jump (about 3 m) underlying a rectangular weir in the major Palermo (Italy) treat-ment plant, a traditional Kaplan solution is compared with two other ones: a Hydrostatic Pres-sure Machine (HPM) located in the upstream channel and a cross-flow turbine located in a specif-ic underground room downstream the same channel.

Cross-flow turbineLow head turbinesHydrostatic Pressure MachineSettore ICAR/01 - Idraulica
researchProduct

Cross-flow Turbine Design for Variable Operating Conditions

2014

Abstract The potential energy hidden in water resources is becoming more and more a significant economic value. The value of the hydroelectric energy is often magnified by the proximity of the turbine to pumps or other energy sinks owned by the same water manager. Cross-flow or Banki-Michel turbines are a very efficient and economic choice that allows a very good cost/benefit ratio for energy production located at the end of conduits carrying water from a water source to a tank. In the paper the optimum design of a cross-flow turbine is sought after, assuming a flow rate variable in time. Regulation of the discharge entering in the turbine is a key issue, which is faced adopting a shaped se…

Cross-flowgeographyEngineeringgeography.geographical_feature_categoryEnergy saving.business.industryTurbinesMechanical engineeringContext (language use)General MedicineInletTurbineSlip factorSettore ICAR/01 - IdraulicaDraft tubeImpellerHydraulic headEnergy savingCross-flow turbineTurbines; Cross-flow; Energy saving.businessEngineering(all)TurbineMarine engineeringProcedia Engineering
researchProduct

Numerical analysis of a new cross-flow type hydraulic turbine for high head and low flow rate

2021

Cross-flow turbines have recently been proposed for energy recovery in aqueducts when the outlet pressure is greater than zero, owing to their constructive simplicity and good efficiency within a large range of flow rates and head drops. In the case of high head drop (higher than 150 m) and relatively small discharge (lower than 0.2 m3/s), the traditional design of these turbines leads to very small widths of the nozzle and the runner; as a consequence, friction losses grow dramatically and efficiency drops down to very low values. Standard Pelton turbines require zero outlet pressure and cannot be used as alternatives. A new counter-pressure hydraulic turbine for high head and low flow rat…

Energy recoveryGeneral Computer ScienceNumerical analysisenergy recoveryMechanicsEngineering (General). Civil engineering (General)ConstructiveVolumetric flow rateSettore ICAR/01 - Idraulicabanki–michell turbinecross-flow turbineModeling and SimulationSimplicity (photography)water distribution networkHead (vessel)Cross-flow turbineTA1-2040micro-hydropowerMicro-hydropower energy recovery cross-flow turbine water distribution network Banki–Michell turbineHydraulic turbinesMathematicsEngineering Applications of Computational Fluid Mechanics
researchProduct

Banki-Michell Optimal Design by Computational Fluid Dynamics Testing and Hydrodynamic Analysis

2013

In hydropower, the exploitation of small power sources requires the use of small turbines that combine efficiency and economy. Banki-Michell turbines represent a possible choice for their simplicity and for their good efficiency under variable load conditions. Several experimental and numerical tests have already been designed for examining the best geometry and optimal design of cross-flow type machines, but a theoretical framework for a sequential design of the turbine parameters, taking full advantage of recently expanded computational capabilities, is still missing. To this aim, after a review of the available criteria for Banki-Michell parameter design, a novel two-step procedure is de…

Optimal designEngineeringhydraulic turbineControl and OptimizationNozzleEnergy Engineering and Power TechnologyMechanical engineeringComputational fluid dynamicsTurbinelcsh:Technologyjel:Q40Impellercross-flow turbinejel:Qjel:Q43jel:Q42jel:Q41jel:Q48jel:Q47hydraulic turbine; Banki-Michell; cross-flow turbine; CFD analysisElectrical and Electronic EngineeringEngineering (miscellaneous)jel:Q49Renewable Energy Sustainability and the Environmentbusiness.industrylcsh:Tjel:Q0jel:Q4Power (physics)Sequential analysisBanki-MichellCross-flow turbinebusinessCFD analysisEnergy (miscellaneous)Energies; Volume 6; Issue 5; Pages: 2362-2385
researchProduct